Problem Chosen 2024 Team Control Number
C MCMW/ICM 2427257

Summary Sheet

Summary

The recent victory of tennis star Alcarez over super Slammer Djokovic to win the 2024 Wimbledon
men’s singles title has been a hot topic in the community, with a number of upsets during the tourna-
ment, which have been fascinating to watch and have caused us to think about the momentum of the
tennis tournament.

For Problem 1, we performed data processing and feature extraction on the dataset given in the
question, and then established the momentum metric function to generalize the quantification of the
player momentum, and also established the performance evaluation function determined by six pa-
rameters to measure specifically the The expected winning percentage was calculated and mapped to
the real data score points, thus establishing the objective function and constraints. The ideal optimal
value of the objective function and the corresponding six optimal parameters are calculated by the BP
parameter optimization process composed of the Gradient Descent Method, and the performance
excellence of the players at specific moments is precisely quantified by the determined functional form,
and the visualization process is also given and analyzed from different perspectives.

For problem 2, we analyze the problem and convert it into the problem of determining whether
the flow of a tennis match is a Markov chain, and construct an evaluation function in the form of
a Markov chain on the basis of the model of problem 1, determine the parameters inside the function
through a similar training process, and obtain the optimal solution of the objective function under the
Markov chain, and we carry out hypothesis testing for the two models as well as the real data, and the
final result is that the Tennis program is a non-Markov chain process.

For problem 3, we built a differential difference model based on the model we built earlier, seek-
ing the approximate curve of momentum metric function extreme value points, which we consider to
be the key nodes at which momentum transformation occurs. At the same time, we took the remain-
ing factors in the dataset into account and built a body force value model to retrain the model for the
players’ individual data and to obtain the most relevant four influencing factors corresponding to the
extreme points based on statistical analysis methods. With the dataset and the corresponding influenc-
ing factors, we give some common strategies to deal with players of different opponents in different
fixture situations, which provide support for pre-match preparation and in-match decision-making.

For Problem 4, we conducted migration tests of the established model on different datasets, and
established a fit level evaluation model to quantitatively analyze the performance level of the model
on different datasets. For the underperforming datasets, we adjusted and changed the structure of the
model considerations according to the actual situation, and identified some different considerations in
similar datasets to improve the model’s generalization ability.

Key words: momentum metric function performance evaluation function BP parameter optimization
process Markov chain influencing factors migration tests

Team 2427257 Page 1 of 31

1 Establishment and Solution of Model for Problem 1

1.1 Content of the problem

Develop a model that captures the flow of play as points occur and apply it to one or more of the matches.
Your model should identify which player is performing better at a given time in the match, as well as
how much better they are performing. Provide a visualization based on your model to depict the match
flow. Note: in tennis, the player serving has a much higher probability of winning the point/game. You
may wish to factor this into your model in some way.

1.2 Analysis of the problem

The problem requires us to develop a model that dynamically captures the performance status of both
players in each points of a tennis match and presents it in a quantitative form to show the performance
status of the players. At the same time, we hope that this model is universally applicable to valuable
tennis match scenarios. Therefore, we consider starting from the scoring points, based on which we
explore and consider multiple factors, in order to establish a comprehensive mathematical model to
quantify the performance of the players; on the other hand, for the optimal selection of some parameters
in the model, we consider using the whole dataset given in the title to carry out training, and according
to the results of the training to guide the calibration of the relevant parameters, which in fact forms a
model tuning BP process.

1.3 Modeling

We believe that there exists a ’momentum’” of the athlete’s own state, which reflects the athlete’s ability
to master the game, the degree of his or her own strength, and the ability to reverse an unfavorable
situation in the course of the game. This likelihood is related to the influence of the events that the
athlete is subject to, such as whether the point is scored or not, whether he/she has the right to serve or
not, etc., and it has a significant positive correlation with his/her probability of scoring a point.

Furthermore, we build a winning performance model based on the conditions and flow of the
matches, which determines whether a player is performing well or not based only on the score-dependent
game state parameter X (note that we do not take into account factors that are closely related to the
player’s own characteristics, such as stamina level, resistance to stress, etc., in order to ensure the uni-
versality of the model), which consists of the following parameters:

Right to serve: x, : {1,0}, 1 means the right belongs to you, O means the right belongs to the
opponent.

Points scored/missed: N : {1,0}, 1 indicates a point scored, O indicates a point scored by the
opponent.

Number of consecutive points scored/missed: x;, positive integer, indicates the number of consec-
utive points scored or missed.

Whether or not the serving team made an error: x; : {0, 1}, 0 means no serving error, 1 means
serving error.

Whether it is a game point or not: x, : {1,0}, 1 means it is a game point, 0 means it is not.

Whether it is a set point: x; : {1,0}, 1 means it is a set point, 0 means it is not.

Team 2427257 Page 2 of 31

Whether it is a direct service point: x3 : {1,0}, 1 means it is a direct service point, 0 means it is
not.

ariable x above is time-dependent x(#,) and the state parameter X (¢,) = (x,, N, X1, X2, X3, X4, Xg, X)

Define the momentum metric function Q(t,,) = kQ(t,—1) + F (X (t,-1)), wheren = 1,2,30Q0(t;) = 0,
t1 denotes the time of the first scoring point, and the decay rate, k € (0, 1), is is used to measure the
extent to which varying time away from that score point affects the momentum of the next scoring
point, and we believe that the closer the event is to that scoring point, the more it will play a role in
influencing the momentum of the next scoring point.

At the same time we define the predicted win rate

p= Ql(tn) - QZ(tn)
Ql(tn) + QZ(tn)

Representing the predicted win rate for that score point derived from the quantized momentum,
we argue that the greater the difference in momentum between player one and player two when player
one’s momentum is higher than player two’s at that score point, the greater the likelihood that player
one should be victorious at that score point.

Under this definition, F denotes the upward tendency of the player’s winning percentage at the n-1st
score point due to various game performances, and is used by us to evaluate the player’s performance.
The performance evaluation function is defined as follows:

o))

q
l-g¢q

X+ (1 =x.)]0(N,0)[1+ k1 (x1 = 1) + ksxox, + k3(xg + X;) + kex3]

F(X(tu-1) =[(1 = x,) +x]J0(N, [T+ ki (x; — 1) = kox,;x2 + k3(xg +xy)]

2)

q
k4[1_q

Among that we consider:

* the right to serve gives the player a greater advantage, we counted the average winning percentage
q of the serving side in the dataset, and used the reward coefficient & to amplify the performance
score when the receiving side wins and the performance deduction when the serving side loses,
here g = 0.6731;

* when scoring N = 1, 6(N, 1) = 1,6(N,0) = 0, only the first term of F is non-zero, at this time,
if the other side serves the ball, you get the reward coefficient %, otherwise, you get 1, and the
same when N = 0. That is, the first term of F is the positive rating when winning the game, and
the second term is the negative rating when losing the game;

* The last part of the two terms of F determines the base value of the evaluation score, including
the win/loss situation, consecutive points scored or lost, and the effect of errors on one’s own
serve. In addition, wins and losses at set and game points have a greater impact on the player
than those in general;

* the scoring factors are related to each other, which in order to incorporate the examination of the
model, such as the situation of the ball possession and the situation of the stronghold can reflect
whether it is a break point or not.

Team 2427257 Page 3 of 31

Momentum Vision

—— Player 1
Player 2

Momentum
|
=
o

|
=
w

—20 -

—25 |

T T T T T T T
0 50 100 150 200 250 300 350
Points

Figure 1: Momentum Vision

On this basis, we define the optimization objective as

. _ 1 Ql(tn) - QZ(tn) _ ?
e (T - Nplay all 1o (Ql(tn) + QZ(tn) N(’n))) (3)

The optimization goal is to make the predicted wins as close as possible to the actual wins. We
include every scoring point of all games in the dataset in the training dataset, and parameterize it to
obtain a universal evaluation model.

1.4 Solving and Analysis

First we processed and extracted the dataset provided by the question using python code, divided it into
thirty-one complete matches, and extracted the required factors from each match, such as the right to
serve, the number of serves, and so on, which in turn were transformed into the factors required for
the performance evaluation function, such as consecutive points scored or lost, whether it was a set
point or not, and so on. In turn, we achieve a complete reproduction of the above model and construct
a functional form of the optimization objective, which is determined by six parameters, and whose
function return value we expect to be as small as possible.

Using the Gradient Descent Method, the parameters were iteratively adjusted by BP, and the above
objective function value was finally optimized to 0.4992, which indicates that the momentum predicted
win rate conforms to the actual situation to approximately 0.65.

At the same time, we obtain a near-optimal solution for all k-parameters in the F function: k =
(56.46,-26.96, 195.48, —190.65, 28.36, 49.67). Taking the final match played by Carlos Alcaraz against
Novak Djokovic as an example, we plotted images of the variation of momentum Q(¢,) and Q»(t,)
for both in 1

As you can see from the graph (where player 1 is Djokovic and player 2 is Alcarez), when the
match first started, Djokovic was firmly in control of the match and thus dominated most of the points
in the first set, however, as the match progressed, the momentum of the two athletes began to change,
which allowed Alcarez started to fight back in the second set and took a hard fought set in a tie-breaker.

Team 2427257 Page 4 of 31

Momentum Vision

—— Momentum Trend
20 A

15 4

10

Momentum

_10 -

T T T T T
o] 50 100 150 200 250 300 350
Points

Figure 2: Momentum Vision

Thereafter, Djokovic began to gradually take control of the match and won the third set comfortably
with a huge 5 game difference. Although Djokovic regained a set in the fourth set (which is reflected
in a small peak in the blue line in the graph late in the match), the match ultimately tipped the scales in
favor of Alcarez, which is a reflection of Alcarez’s momentum.

At the same time, we visualized the difference between the momentum of the two athletes in the
race 2 This image provides another, more intuitive perspective on the flow of the match, as we can
easily find which player is performing better at a given moment in time, which is reflected in the plus
and minus of the vertical axis, while the absolute value of the vertical axis value quantifies how well the
player is performing. In addition, looking at the fluctuations of the curve, it is easy to see that some of
the turning points of the curve reflect the tendency that players are trying to take the pace of the game
into their own hands.

In addition, we plotted the image of the performance evaluation function F(X(t,-1)) of the two
players in the flow of the game, and at the same time, in order to better observe the trend of its value
through the more violent fluctuations, we made a certain fit to the discrete sequence composed of the
function value, in order to fully show its relative trend on the basis of filtering out the violent fluctua-
tions, as shown in the figure 1.4 and 1.4 The curve formed by the values returned by the performance
evaluation function can be seen in the graph, and its general trend and relative magnitude are similar
to the course of the game analyzed earlier, but what can be observed in particular is that towards the
end of the game, the value of Djokovic’s performance evaluation begins to drop drastically, which is
considered to be a sign that, on one hand, he has completely lost the control over the situation, and,
on the other hand, it also reveals that there may be the influence of some other potential factors in the
course of the process, and that’s exactly what we will need to take into account later on.

All in all, these charts give us a visual representation of the flow of the game and the performances
of both players, and provide different perspectives for us to get a fuller picture of the game.

Team 2427257

Page 5 of 31

performance evaluation

performance evaluation

1.0~

0.5

0.0

-1.0 1

-1.5 1

_2.0 -

—— Player 1
—— Player 2

|

it

i

T
0 50 100

T
150
Points

T
200

T
250

300 350

0.2 1

0.1

0.0 A

_0.1 -

_02 -

—0.3 4

_0.4 -

—— Player 1
—— Player 2

T
0 50 100

T
150
Points

T
200

T
250

300 350

Team 2427257 Page 6 of 31

2 Establishment and Solution of Model for Problem 2

2.1 Content of the Problem

A tennis coach is skeptical that “momentum” plays any role in the match. Instead, he postulates that
swings in play and runs of success by one player are random. Use your model/metric to assess this
claim.

2.2 Analysis of the Problem

The tennis coach believes that swings during a match are random and do not depend on so-called poten-
tial energy. According to our definition, momentum is the accumulated effect of a series of past events
and conditions on whether or not the current point is scored, and this effect is reflected in the swings
of each point. In other words, the coach believes that the result of the occurrence of the current scoring
point event depends only on the current playing conditions and has nothing to do with the relevant
events of the previous scoring points, i.e., the playing conditions of a tennis match are considered to be
a Markov chain process; whereas, if momentum is considered to be present in the course of the match,
1.e., the process is a non-Markov chain process. Therefore, in order to determine whether the tennis
match is a Markov chain or not, based on the model of the first question, we delete the non-Markovian
term Q(t,-1) from the model, transform the performance function into the current performance func-
tion, and after replacing the state parameter X (z,) with X’(t,), we carry out the same training to obtain
a Markov chain model representing the data and compare it with the original model to arrive at the final
result. Comparison is made to arrive at the final result.

2.3 Modeling

Define the state space S = {(0,0,0), (1,0,0), ...} , to denote the current scores (points, games, sets),
and Y (z,,) to denote the scores at the moment of #,,. That is, the Markov chain-based model is satisfied:

P{Y(t,) = s(t,)|Y (t1) = 5(21), Y (r2) = s(t2), ... Y (tp-1) = 5(t4-1)}

= PUY (1) = ()Y (ta1) = 5(tn1)} @

P{Y (t,) = s(tn)} = Funknown(X'(t,), Y (ta-1)) (5

where X'(1,) = (N (t,-1),x1(ta=1), X3(tn=1), X, (1), X (tn), X5 (1), X2 = 0), denotes the current state
in the Markov chain.

In order to maintain formal consistency between the two models and to facilitate subsequent com-
parisons between the two models, we have selected the main state parameters from the first-question
model, but have adopted a different composition for the scoring point. We consider that the state of the
current scoring point consists of two components, the scoring situation of the previous point (winner/-
consecutive number of points/serve direct), and the nature of the current scoring point as it would have
been if the point had not been scored (set point/game point/right to serve).

Let Q'(t,) = F(X'(t,)), and replace the performance function in the first-question model with the
current performance function, then the probability of winning can be expressed as (where a negative

Team 2427257 Page 7 of 31

probability denotes the opponent’s winning percentage):

F(X{(ta)) = F(X5(ta))

P{Y(t,) = s(t,) =Y(t,—1) +(1,0,0)} = - ; (6)
We can obtain an optimization objective similar in form to the first problem:
1 F(X|(tn)) — F(X}(tn >
- ((X{(t)) = F(X,(0,) _N(tn)) 0
Nplay all 1 F(Xl(tn)) +F(X2(tn))

For the performance function F(X’(z,)) of the trained Markov chain model, we compare the conver-
gence value and convergence accuracy of its optimization objective with the results in the first question.
In addition, we compare the accuracy of the two models in predicting the true sequence point by point,
1.e., we take the result of any game from the data set as the true data, and its true win/loss result N
as the data sequence, i.e., N(#,), and input the information of the scoring points point by point into
the optimized Q-model and F-model, and output the predicted win/loss probability of the next scoring
point according to the corresponding probability formula, and get a sequence of win/loss probability
Sequence Q{P;, } and F{P;, }, calculate and compare the size of the two respectively:

> (gn = N())? ®)
D (= N(w))? ©)

A comprehensive multi-dimensional comparison of the two models, combined with a comparison of
the true values, can adequately determine whether the tennis schedule is a Markov chain or not.

2.4 Solving and Analysis

The BP parameter optimization process for this model is also carried out using the Gradient Descent
Method, and the specific optimization process is the same as in Problem 1, with only the functional
form being different. The objective is optimized to obtain the optimal 77 = 0.6371, and the optimal
parameterl_c) = (94.54,2,-97.16, 6.8 x 1073, 20, 20)

In the first question, the convergence value of the optimization objective is 7 = 0.4992. It can be
found that 7" is significantly larger than 7" and % >> 1 compared to the optimization result in the
first question, thus the optimal prediction of the winning percentage of the in-the-moment performance
model without the consideration of the antecedent tournament conditions is significantly inferior to the
momentum-performance model with the consideration of the antecedent tournament conditions.

Thus, we are well-conditioned to believe that the match play condition of tennis is a non-Markov
chain, i.e., there exists a momentum that affects the swings at each point in the match.

3 Establishment and Solution of Model for Problem 3

3.1 The First Problem

Coaches would love to know if there are indicators that can help determine when the flow of play is
about to change from favoring one player to the other.

Team 2427257 Page 8 of 31

Using the data provided for at least one match, develop a model that predicts these swings in the
match. What factors seem most related (if any)?

3.2 The Second Problems

Given the differential in past match “momentum” swings how do you advise a player going into a new
match against a different player?

3.3 Analysis of the problems

For the first question, we believe that for a given match data, the momentum metric function we built can
give the full momentum change process of the match flow. Based on this, we believe that the key swings
in the match where relative momentum shifts occur are often the swings in which the players start to
change the current unfavorable situation after accumulating momentum and regain the initiative of the
match. To predict these swings in the match, we can build a difference difference model on the basis
of the momentum metric function to find the extreme points of the approximate relative momentum
curve, and we believe that incredible swings tend to occur at these points.

For the points with incredible swings, we take the rest of the factors mentioned in the dataset into
consideration in the model, including players’ physical strength, hitting area, etc. (at the same time, we
established a model of players’ physical strength with respect to the time), and by means of statistical
analysis, we get the four most relevant factors for each player in the points with incredible swings.
pointss the four most relevant factors.

Thus, we can use past game data to understand a player’s momentum trend and the factors most
associated with momentum change. For the players themselves, we should consider how to make rea-
sonable use of these factors for pre-match preparation, how to make reasonable use of the rules to make
momentum change in the course of the match, and how to adjust their own rhythm for offense and de-
fense conversion; on the other hand, when facing a new player, we can analyze the data to reasonably
find out his weaknesses, so as to sabotage the opponents’ advantageous situation, and reasonably allo-
cate physical strength to the players. On the other hand, when facing a new player, we can analyze the
data to find out his weaknesses, so as to destroy the opponent’s advantage on the court, reasonably al-
locate the physical energy to consume the opponent, and positively utilize the right to serve to increase
the scoring rate.

3.4 Modeling

First of all, we build a difference difference model AQ (i, d¢, j) based on momentum metric function,
where 1 is the corresponding scoring point, dq is the size of the chosen difference, and j is the corre-
sponding player. Since each player is affected by different relevant influences, the training dataset of
the model should be the player’s own dataset and the rest of the information is additionally extracted as
one of the datasets for the statistical analysis, so there is:

AQ(i,6q, j) = R(Fpata(j))[pr.pa.ps.pal (10)

Team 2427257 Page 9 of 31

Where Data(j) is the corresponding dataset for player j, p to p4 are the four most relevant factors,R is
the statistical analysis method used, specifically:

4
R :max(Zp,-*Fi) (11)
i=1

Furthermore, we model the physical strength of the player with respect to time H (i,) and consider the
factors that influence the physical strength, including

* Physical strength at the previous time H (i, — 1)
* The running distance h at this scoring point

* The number of strokes at this point n

* The stroke speed v at this time point

* The rest time before this scoring point t

Combining the above factors there are:

H(i,1) = H(i,t = 1) = ¢1h — don — ¢3v + ¢at (12)

3.5 Solving and Analysis

We take the data of the final match as an example for the difference difference score, and for the statistical
analysis of the factors related to for the scoring points, we found that the four main influencing factors for
Djokovic are [physical strength value, net points, serve rights, serve errors], while the four main factors
for Alcarez are [consecutive points, serve rights, physical strength value, set points]. Combined with
the previous analysis of the process of the final match, it is not difficult to find that Djokovic gradually
lost the mastery of the game in the late stages of the match, and the performance point evaluation also
declined rapidly, which may be related to the rapid decline of its physical strength value, while the net
points are more important means of scoring, which can be seen that Djokovic has a more exquisite net
skills; while Alcarez is less affected by the Alcarez, on the other hand, is less affected by the physical
strength, so he can maintain a high level of competition, but it can be found that his scoring is more
dependent on the right to serve, and it is more difficult to seize the initiative of the game in the set
without the right to serve.

From the above examples, we can see that targeted training before the match and looking for the
opponent’s weaknesses, as well as actively adjusting the pace and using the rules of the game during
the game can be more helpful to win the game, so we have summarized some common strategies for
the game:

1. For the side affected by physical strength, the pace of the game should be appropriately acceler-
ated, the game time should be shortened, and the physical strength should be actively utilized in
the physical exhaustion of the rules to rest to obtain the recovery of physical strength.

2. For the opponent who is poor in a certain technical point, the data should be obtained from the
data and targeted pre-match preparation.

Team 2427257 Page 10 of 31

3. For a team that is more dependent on the serve, it should give more stamina when it has the serve
to improve its scoring.

4. For the team that is more affected by consecutive point losses, the rules should be used to break
the trend of consecutive point losses.

5. For the team affected by service errors, reduce the amount of energy used when serving.

6. For players who are affected by physical strength, they may choose to give up some difficult balls
to minimize the distance they have to run in order to maintain their physical strength.

7. For the opponent who is affected by the game point or match point game, he should pay more
stamina value in these points.

The above strategies are partial strategies taken from the model, and actual matches should take into
account fuller factors as well as more comprehensive strategies.

4 Establishment and Solution of Model for Problem 4

4.1 Content of the Problem

Test the model you developed on one or more of the other matches. How well do you predict the swings
in the match? If the model performs poorly at times, can you identify any factors that might need to
be included in future models? How generalizable is your model to other matches (such as Women’s
matches), tournaments, court surfaces, and other sports such as table tennis.

4.2 Analysis of the Problem

The problem examines the performance level of the model we built on the rest of the different types of
datasets, and we should first build a pervasive level evaluation model to evaluate the performance level
of the model. For the competition dataset where some of the factors are different but the basic kernel
is similar, it is essentially migration learning to examine the migration ability of the model, and in the
face of the fact that the results are not very good, we should be able to find out the factors that are more
different between the two datasets, so as to make certain modifications to the key structure of the model
to adapt it more to the specific situation, which is also a manifestation of the model’s pervasive level.

4.3 Modeling

Considering the performance level of the model on different datasets, we build a universal level eval-
uation model O(Data;), which represents the performance level on the ith dataset, which is specified
as:

allData
0(Datary = i MW ~ Data)) -
' \IData(0)]
For datasets with poor model performance, we should restructure the relevant factors according to the
actual situation and retrain the F-function to make it more adaptable to datasets with specific charac-
teristics.

Team 2427257 Page 11 of 31

4.4 Solving and Analysis

We searched for different datasets and tested the models for different datasets with the universal level
evaluation model, and found that it performed well on datasets such as Men’s Singles Championships,
Red Clay Courts, etc., while it did not perform well on datasets such as Women’s Singles Grand Slam,
Hard Courts, Table Tennis, etc., which suggests that the latter should be taken into account with different
factors and focuses, e.g., in Women’s Singles matches, serve advantage in women’s singles matches, the
greater relationship between stroke speed and points scored or lost in Hard Courts, the greater emphasis
on individual skill in table tennis matches and the lesser importance of fitness values, and so on.

In summary, our model generalizes better on datasets with more similar features, while on datasets
that are not similar, elements such as the function structure should be changed according to the actual
situation.

Team 2427257

Page 12 of 31

A Code of problem 1

A.1 probleml.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import os

Calculate the winning percentage of the serving side
q_num=0

for k in range(7284):

value_data=Parameters. get (k)
if(value_data[O]==value_data[l]):

q_num+=I

q_goal=q_num/7284

print(q_goal)

PEE)

Consider Gradient Descent Method to form a BP parameter o

Set server as the ball right, pointer_victor as the autho
Whether serve is direct depends on pl_ace/p2_ace

Specify the folder path
folder_path = ’/Users/guyue //Mathematical_modeling/2024 _

Get all files in the folder
all_files = os.listdir (folder_path)

Filter out CSV files
csv_files = [file for file in all_files if file.endswith(’.

all_Parameters =[]
all_playerl_target=[]
all_player2_target =[]

Loop over CSV files

for csv_file in csv_files:

Construct complete file paths

file_path = os.path.join(folder_path, csv_file)

Use pandas to read CSV files
data = pd.read_csv(file_path)

Team 2427257

Page 13 of 31

target_column_name
Parameters = {}
num_data=[]

for i in range(1000):
row_index = i

if row_index < len(data):
for j in target_column_name:
col_name = j

element = data.at[i, j]

if (element=="0"):

element=0

elif (element=="15"):
element=1

elif (element=="30"):
element=2

elif (element=="40"):
element=3

elif (element=="AD"):
element=4

num_data.append (element)
Parameters [row_index |]=num_data
num_data=[]

The Parameters dictionary contains

playerl_target = {}
player2_target = {}

[server’,’ point_victor’, pl_sets’, pl.

the required data for

Target Data: Possession (1, 2) x_r Points Scored (1, 2) N

for i in range(1000):
value_num = Parameters. get(1)
if value_num is not None:

playerl_num = [0, O, O, O, O, O, O]
player2_num 0, 0, 0, 0, 0, O]

Il
—
)
-
-
-
-

con_num = 1

if value_num|[l] ==
playerl _num [0] 1
player2_num [0] = 0O
else:

playerl_num|[0] = 0
player2_num[0] = 1

Initialize playerl_nu
Initialize player2_nu

Team 2427257

Page 14 of 31

if value_num][1] == 1:

for t in range(i - 1, 0, -1):
value_before = Parameters.get(t)
if value_before[l] == 1:
con_num += 1

else:

break

else:

for t in range(i - 1, 0, -1):
value_before = Parameters.get(t)

if value_before[l] ==
con_num += 1

else:

break

playerl_num[1] = player2_num|[1l] = con_num

if value_num|[10] == 1:

playerl_num [2] = player2_num[2] = 0

elif value_num[10] == 2 and value_num|[1] == 1:
playerl _num([2] = 1

else:

player2_num|[2] = 1

if value_num]|[8] =
playerl _num [3] =
player2_num|[3] =
elif value_num|[8] == 0 and value_num|[9] == 1:
playerl_num|[3] = O

player2_num [3] = 1

else:

playerl _num [3] = 0

player2_num|[3] = 0

1 and value_num[9] == O:

S~

if value_num|[0] == 1:

playerl_num [4] 1

player2_num (4] = 0

else:

playerl_num([4] = 0

player2_num[4] = 1

if (int(value_num|[4]) == 3 and int(value_num[7]) < 3) or (il

playerl_num|[5] = player2_num/[5] = 1
else:
playerl_num [5] = player2_num[5] = 0

Team 2427257

Page 15 of 31

if ((int(value_num|[3]) == 6 and (int(value_num[6]) == 6 or
(int(value_num|[3]) == and int(value_num|[6]) == 4)) or ((il
playerl_num[6] = player2_num/[6] = 1

else:

playerl _num [6] = player2_num[6] = 0

playerl_target[1i] playerl_num . copy ()
player2_target|[1i] player2_num . copy ()
all_Parameters .append(Parameters)
all_playerl_target.append(playerl_target)
all_player2_target.append(player2_target)

def T_fun(initial_parameters):
all_sum=0

for p in range(len(all_Parameters)):
playerl_target=all_playerl_target[p]
player2_target=all_playerl_target[p]
Parameters=all_Parameters [p]

The objective function F

def F_fun(initial_parameters ,n,t):

q=0.6731191652937946

if t==1:

player=playerl_target[n]

else:

player=player2_target[n]

k1, k2, k3, k4, k5, k6 = initial_parameters
F=((1-player[4])%(q/(1-q))+player[4])*player[0]*(1+kl*x(play
return F

The objective function Q
def Q_fun(initial_parameters , m, t):

a_sum=0

if m== 1:
return 1
else:

if t == 1:

for f in range(m-1):
a_sum=a_sum*0.95+F_fun(initial_parameters , f, 1)
else:

for f in range(m):
a_sum=a_sum=*0.95+F_fun(initial_parameters , f, 2)
return a_sum

Team 2427257 Page 16 of 31

sum=0

for 1 in range(1000):

if 1 in Parameters:
value_list=Parameters[1]
if value_list[l]==1:
N=1

else:

N=0
sum+=((Q_fun(initial_parameters , 1+1, 1) — Q_fun(initial_par
else:

break

all_sum+=sum

return all_sum

def gradient(initial_parameters):
del_initial_parameters_1=[0,0,0,

0,0,0]
del_initial_parameters_2=[0,0,0,0,0,0]
del_initial_parameters_3=[0,0,0,0,0,0]
del_initial_parameters_4=[0,0,0,0,0,0]
del_initial_parameters_5=[0,0,0,0,0,0]
del_initial_parameters_6=[0,0,0,0,0,0]
i=1
for a in initial_parameters:
if i ==1:

del_initial_parameters_1[0]=a+0.001

del_initial_parameters_2[0]=a

del_initial_parameters_3[0]=a
del_initial_parameters_4[0]=a
del_initial_parameters_5[0]=a
del_initial_parameters_6[0]=a
elif i==2:

del_initial_parameters_1[1]=a

del_initial_parameters_2[1]=a+0.001
del_initial_parameters_3[1]=a

a

del_initial_parameters_4[1]

Team 2427257

Page 17 of 31

del_initial_parameters_S5[1]=a
del_initial_parameters_6[1]=a
elif i==3:

del_initial_parameters_1[2]=a
del_initial_parameters_2[2]=a

del_initial_parameters_3[2]=a+0.001

del_initial_parameters_4[2]=a
del_initial_parameters_5[2]=a
del_initial_parameters_6[2]=a
elif i==4:

del_initial_parameters_1[3]=a
del_initial_parameters_2[3]=a
del_initial_parameters_3[3]=a

del_initial_parameters_4[3]=a+0.001

del_initial_parameters_5[3]=a

del_initial_parameters_6[3]=a
elif i==5:

del_initial_parameters_1[4]=a
del_initial_parameters_2[4]=a
del_initial_parameters_3[4]=a
del_initial_parameters_4[4]=a

del_initial_parameters_5[4]=a+0.001

del_initial_parameters_6[4]=a

elif i==6:

Team 2427257

Page 18 of 31

del_initial_parameters_1[5]=a

a

del_initial_parameters_2[5]

del_initial_parameters_3[5]=a

del_initial_parameters_4[5]=a

a

del_initial_parameters_5[5]

del_initial_parameters_6[5]=a+0.001
i+=1

df_k1=(T_fun(del_initial_parameters_1)-T_fun(initial_parame
df_k2=(T_fun(del_initial_parameters_2)-T_fun(initial_parame
df_k3=(T_fun(del_initial_parameters_3)-T_fun(initial_parame
df_k4=(T_fun(del_initial_parameters_4)-T_fun(initial_parame
df_k5=(T_fun(del_initial_parameters_5)-T_fun(initial_parame
df_k6=(T_fun(del_initial_parameters_6)-T_fun(initial_parame
gradients = []

gradients .append (df_k1)

gradients .append (df_k2)

gradients .append (df_k3)

gradients .append (df_k4)

gradients .append (df_k5)

gradients .append (df_k6)

return np.array (gradients)

Gradient Descent Method

def gradient_descent(initial_params , learning_rate , max_ite
params = np.array (initial_params)

iteration = 0

while iteration < max_iterations:
grad = gradient(params)

params = params — learning_rate s grad

Calculate the van of the gradient as a stopping condition
gradient_norm = np.linalg.norm(grad)

print(f”Iteration {iteration_ +,1}, ,Parameters: {params}, Gr

if gradient_norm < tolerance:

Team 2427257 Page 19 of 31

break

iteration += 1
print (T_fun(params))
return params

Initial parameters, learning rate, maximum number of iterc
initial_params = [110.07021533, 26.13556517, 230.1001945

20, 20]
learning_rate = 100
max_iterations = 200
tolerance = le-6

Execute the Gradient Descent Method

result = gradient_descent(initial_params , learning_rate , mz¢
print (”Optimal_ parameters:”, result)
print (”Optimal_ functionvalues:”, T_fun(result))

A.2 probleml-picture.py

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

file_path = ’/Users/guyue //Mathematical_modeling/2024 _ |
data = pd.read_csv(file_path)

target_column_name = [’server’,’ point_victor’, pl_sets’,’ pl
Parameters = {}
num_data=[]

for i in range(1000):
row_index = 1

if row_index < len(data):
for j in target_column_name:
col_name = |

element = data.at[i, j]

if (element=="0"):

element=0

elif (element=="15"):

Team 2427257

Page 20 of 31

element=1

elif (element=="30"):

element=2

elif (element=="40"):

element=3

elif (element=="AD"):

element=4

num_data.append (element)
Parameters[row_index]=num_data
num_data=[]

#The Parameters dictionary contains the required data for e
playerl_target = {}
player2_target = {}

Target Data: Possession (1, 2) x_r Points Scored (I, 2) N
for i in range(1000):

value_num = Parameters. get(1i)

if value_num is not None:

|
—_—
(]

playerl _num = 0, 0, 0, 0, 0, O] # Initialize playerl_nu
player2_num = [0, O, O, O, O, O, O] # Initialize player2_nu

con_num = 1

if value_num|[1] ==
playerl _num [0] = 1
player2_num[0] = 0O
else:

playerl_num [0] = O
player2_num |[0] = 1

if value_num|[1l] == 1:

for t in range(i - 1, 0, -1):
value_before = Parameters.get(t)
if value_before[l] == 1:

con_num += 1

else:

break

else:

for t in range(i - 1, 0, -1):
value_before = Parameters.get(t)
if value_before[l] ==

con_num += 1

else:

Team 2427257 Page 21 of 31

break

playerl_num|[1] = player2_num([1] = con_num

if value_num|[10] == 1:

playerl_num|[2] = player2_num|[2] = 0

elif value_num[10] == 2 and value_num|[1l] == 1:
playerl _num[2] = 1

else:

player2_num|[2] = 1

if value_num[8] == 1 and value_num[9] == O:

playerl_num|[3] = 1

player2_num([3] = 0O

elif value_num|[8] == 0 and value_num|[9] == 1:
playerl _num |[3] = 0

player2_num[3] = 1

else:

playerl _num|[3] = 0O
player2_num [3] 0
if value_num|[0] == 1:
playerl_num [4] 1
player2_num [4] 0

else:
playerl_num [4]
player2_num [4] = 1

if (int(value_num|[4]) == 3 and int(value_num[7]) < 3) or (il
playerl_num [5] = player2_num|[5] = 1
else:

playerl_num [5] = player2_num|[5] = 0

if ((int(value_num|[3]) == 6 and (int(value_num[6]) == 6 or
(int(value_num|[3]) == 5 and int(value_num|[6]) == 4)) or ((il
playerl_num|[6] = player2_num[6] = 1

else:

playerl _num [6] = player2_num[6] = 0O

playerl_target[1i]
player2_target|[1i]

playerl_num . copy ()
player2_num . copy ()

def F_fun(initial_parameters ,n,t):
q=0.6731191652937946

if t==1:

player=playerl_target[n]

Team 2427257 Page 22 of 31

else:

player=player2_target[n]

k1, k2, k3, k4, k5, k6 = initial_parameters
F=((1-player[4])%(q/(1-q))+player[4])xplayer[0]«(1+kl=(play
return F

y=1]
yy=1[]

for i in range(len(Parameters)):
y.append (F_fun([56.46144093 ,-26.96010033 ,195.48414152
yy.append (F_fun([56.46144093 ,-26.96010033 ,195.48414152

[
[

1
2
o

]

in range(len(y)):

T <<

]
]
i
0
0
for j in range(i+1):

a+=y[]]

b+=yy[]]

yl.append(a)

y2.append(b)

The horizontal coordinates are the sequence of integers 1
x = list(range(l, len(y) + 1))

dy =[]

for i in range(len(y)):
dy.append(yl[i]-y2[i])

degree = 10

coefficients_y = np.polyfit(x, y, degree)
coefficients_yy = np.polyfit(x, yy, degree)

fit_y = np.polyval(coefficients_y , x)
fit_yy = np.polyval(coefficients_yy , x)

» 0

plt.plot(x, y, label="Player 1’ ,linewidth=1)
plt.plot(x, yy, label="Player,2’,linewidth=1)

#plt.plot(x, fit_y, label="Player 1)
#plt.plot(x, fit_yy, label="Player 2°)

Team 2427257 Page 23 of 31

Plot line graphs

#plt.plot(x, y, label="Player 1)
#plt.plot(x, yy, label="Player 2°)
#plt.plot(x, dy, label="Momentum Trend ’)

Set up chart titles and axis labels
#plt.title(Momentum Vision)
plt.xlabel (’Points)

plt.ylabel (’performance evaluation)

Add legends
plt.legend ()

Display charts
plt.show ()

Team 2427257

Page 24 of 31

B Code of problem 2

B.1 problem2.py

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import os

Calculate the winning percentage of the serving side
q_num=0

for k in range(7284):

value_data=Parameters. get (k)
if(value_data[O]==value_data[l]):

q_num+=I

q_goal=q_num/7284

print(q_goal)

PEE)

Consider Gradient Descent Method to form a BP parameter o

Set server as the ball right, pointer_victor as the autho
Whether serve is direct depends on pl_ace/p2_ace

Specify the folder path
folder_path = ’/Users/guyue //Mathematical_modeling/2024 _

Get all files in the folder
all_files = os.listdir (folder_path)

Filter out CSV files
csv_files = [file for file in all_files if file.endswith(’.

all_Parameters =[]
all_playerl_target=[]
all_player2_target =[]

Loop over CSV files

for csv_file in csv_files:

Construct complete file paths

file_path = os.path.join(folder_path, csv_file)

Use pandas to read CSV files
data = pd.read_csv(file_path)

Team 2427257

Page 25 of 31

target_column_name
Parameters = {}
num_data=[]

for i in range(1000):
row_index = i

if row_index < len(data):
for j in target_column_name:
col_name = j

element = data.at[i, j]
if (element=="0"):
element=0

elif (element=="15"):
element=1

elif (element=="30"):
element=2

elif (element=="40"):
element=3

elif (element=="AD"):
element=4
num_data.append (element)

Parameters [row_index |]=num_data

num_data=[]

The Parameters dictionary contains

playerl_target = {}
player2_target = {}

Target Data: Possession (1,
for i in range(1000):
value_num = Parameters.get(1i)

if value _num is not None:

playerl _num = [0, O, O, O, O,
player2_num 0, 0, 0

Il
—
(]
-
-
.
.
]
"

con_num = 1

if value_num][1] ==
playerl _num[0] = 1
player2_num|[0] = 0O
else:

playerl_num [O]

Il
(e

[server’,’ point_victor’, pl_sets’, pl.

the required data for

2) x_r Points Scored (1, 2) N

0,
0,

0]
0]

Initialize playerl_nu
Initialize player2_nu

Team 2427257 Page 26 of 31
player2_num|[0] = 1
if value_num][1] == 1:
for t in range(i - 1, 0, -1):
value_before = Parameters. get(t)
if value_before[l] == 1:
con_num += 1
else:
break
else:
for t in range(i - 1, 0, -1):
value_before = Parameters.get(t)
if value_before[l] ==
con_num += 1
else:
break
playerl_num[1] = player2_num|[1l] = con_num
if value_num|[10] == 1:
playerl_num|[2] = player2_num|[2] = 0
elif value_num[10] == 2 and value_num|[1l] == 1:
playerl _num[2] = 1
else:
player2_num|[2] = 1
if value_num|[8] == 1 and value_num|[9] == O:
playerl _num|[3] = 1
player2_num([3] = 0
elif value_num|[8] == 0 and value_num|[9] == 1:
playerl_num [3] = 0O
player2_num [3] = 1
else:
playerl_num([3] = 0O
player2_num|[3] = 0
if value_num|[0] == 1:
playerl_num [4] 1
player2_num([4] = 0O
else:
playerl_num [4]
player2_num [4] = 1
if (int(value_num[4]) == 3 and int(value_num[7]) < 3) or (il

playerl_num [5] = player2_num|[5] = 1
else:

Team 2427257 Page 27 of 31

playerl_num|[5] = player2_num|[5] = 0

if ((int(value_num|[3]) == 6 and (int(value_num[6]) == 6 or
(int(value_num|[3]) == 5 and int(value_num|[6]) == 4)) or ((il
playerl_num|[6] = player2_num|[6] = 1

else:

playerl_num|[6] = player2_num/[6] = 0

playerl_target[1i] playerl_num . copy ()
player2_target[1i] player2_num.copy ()
all_Parameters .append(Parameters)
all_playerl_target.append(playerl_target)
all_player2_target.append(player2_target)

def T_fun(initial_parameters):
all_sum=0

for p in range(len(all_Parameters)):
playerl_target=all_playerl_target[p]
player2_target=all_playerl_target[p]
Parameters=all_Parameters|[p]

The objective function F

def F_fun(initial_parameters ,n,t):

q=0.6731191652937946

if t==1:

player=player]l_target[n]

else:

player=player2_target[n]

k1, k2, k3, k4, k5, k6 = initial_parameters
F=((1-player[4])%(q/(1-q))+player[4])*player [0]*(1+kl*(play
return F

sum=0

for 1 in range(len(playerl_target)):
if 1 in Parameters:
value_list=Parameters|[1]

if value_list[1l]==1:

N=1

else:

N=0

sum+=((F_fun(initial_parameters , 1, 1) — F_fun(initial_paran
else:

break

all_sum+=sum

return all_sum

Team 2427257

Page 28 of 31

def gradient(initial_parameters):

del_initial_parameters_1=[0,0
del_initial_parameters_2=[0,0
del_initial_parameters_3=[0,0
del_initial_parameters_4=[0,0
del_initial_parameters_5=[0,0
del_initial_parameters_6=[0,0
i=1

for a in initial_parameters:
if 1 ==1:

,0’

2 9

)

0,0,0]
0,0,0,0]
0,0,0,0]
,0,0,0,0]
0,0,0,0]
0,0,0,0]

’
b b

b b

del_initial_parameters_1[0]=a+0.001

del_initial_parameters_2[0]=a

del_initial_parameters_3[0]=a

a

del_initial_parameters_4[0]
del_initial_parameters_5[0]=a
del_initial_parameters_6[0]=a

elif 1==2:
del_initial_parameters_1[1]=a

del_initial_parameters_2[1]=a+0.001

del_initial_parameters_3[1]=a
del_initial_parameters_4[1]=a
del_initial_parameters_5[1]=a
del_initial_parameters_6[1]=a
elif i==3:

del_initial_parameters_1[2]=a

del_initial_parameters_2[2]=a

del_initial_parameters_3[2]=a+0.001

del_initial_parameters_4[2]=a

Team 2427257

Page 29 of 31

del_initial_parameters_5[2]=a
del_initial_parameters_6[2]=a
elif i==4:

del_initial_parameters_1[3]=a
del_initial_parameters_2[3]=a

del_initial_parameters_3[3]=a

del_initial_parameters_4[3]=a+0.001

del_initial_parameters_5[3]=a

del_initial_parameters_6[3]=a
elif i==5:

del_initial_parameters_1[4]=a
del_initial_parameters_2[4]=a
del_initial_parameters_3[4]=a

del_initial_parameters_4[4]=a

del_initial_parameters_5[4]=a+0.001

del_initial_parameters_6[4]=a
elif i==6:

del_initial_parameters_1[5]=a
del_initial_parameters_2[5]=a
del_initial_parameters_3[5]=a
del_initial_parameters_4[5]=a

del_initial_parameters_5[5]=a

del_initial_parameters_6[5]=a+0.001

i+=1

Team 2427257

Page 30 of 31

df_kl1=(T_fun(del_initial_parameters_1)-T_fun(initial_parame
df_k2=(T_fun(del_initial_parameters_2)-T_fun(initial_parame
df_k3=(T_fun(del_initial_parameters_3)-T_fun(initial_parame
df_k4=(T_fun(del_initial_parameters_4)-T_fun(initial_parame
df_k5=(T_fun(del_initial_parameters_5)-T_fun(initial_parame
df_k6=(T_fun(del_initial_parameters_6)-T_fun(initial_parame
gradients = []

gradients .append (df_k1)

gradients .append (df_k2)

gradients .append (df_k3)

gradients .append (df_k4)

gradients .append (df_k5)

gradients .append (df_k6)

return np.array(gradients)

Gradient Descent Method

def gradient_descent(initial_params , learning_rate , max_ite
params = np.array (initial_params)

iteration = 0

while iteration < max_iterations:
grad = gradient(params)

params = params — learning_rate * grad

Calculate the van of the gradient as a stopping condition
gradient_norm = np.linalg.norm(grad)

print (f”Iteration {iteration+,1}, ,Parameters: {params}, Gr

if gradient_norm < tolerance:
break

iteration += 1

print (T_fun(params))

return params

Initial parameters, learning rate, maximum number of iterc
initial_params = [10, 26, 23, 73, 20, 20]
learning_rate = 100

max_iterations = 200
tolerance = le-6

Team 2427257 Page 31 of 31

Execute the Gradient Descent Method

result = gradient_descent(initial_params , learning_rate , me

print (”Optimal parameters:”, result)
print (”Optimal_ functionvalues:”, T_fun(result))

