
Problem Chosen
A

2023
ShuWei Cup

Summary Sheet

Team Control Number
2023092519600

Modeling and Optimization Control Issues of Compound
Helicopter

Summary
The composite helicopter design combining fixed wing and rotor blades maintains the heli-

copter’s maneuverability while increasing its high speed capability. By operating the four power
components of the coaxial helicopter, we are able to control the attitude angle of the helicopter
while maintaining its maneuverability. The prediction and manipulation of helicopter attitude
through physical and mathematical modeling of helicopter flight is important for helicopter
design and use.

For Problems 1 and 2, we first established the Euler angle model and the concept of a
helicopter local coordinate system for problem analysis to provide a framework for problem
analysis. In order to solve the expression for the moment coefficient for a given condition,
we interpolated the moment factor functions and functions of propeller thruster thrust and
rotational torque, and developed an aerodynamic model and a simplified flux conservation
model to solve for the dynamic pressure, and established expressions for the torque related to
the seven maneuvers as well as the aircraft’s flight speed. By determining the principal axis of
inertia, we determined the dynamics of the torque with respect to the helicopter’s attitude angle
, and computed the relationship between the attitude angle with time.

For Problems 3 and 4, we analyze the dynamic conditions satisfied by the helicopter, and
obtain the equations satisfied by the manipulated quantities according to the general and sim-
plified special cases of the flow conservation model, respectively. In Problem 3, the constraints
imposed do not change with time, and the solution space of the solved maneuvers does not
change with time. In particular, in the simplified special case, the angle made between the
fixed vertical and horizontal tails and the airflow is a 0 angle, and a maneuvering scheme that
adjusts only 4 maneuvering quantities of the coaxial rotor is designed. In Problem 4, the dy-
namic pressure changes with time, and the solution space solved also changes with time. In the
simplified special case, we always keep the angle between the vertical and horizontal tails and
the airflow at an angle of 0, and design an operation scheme that only adjusts the coaxial rotor
by 4 maneuvering amounts. In addition, we performed a sensitivity analysis for each of the two
problems to find the solutions, the most stable, and the easiest to operate.
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1. Problem Background

Helicopters possess flight capabilities such as vertical takeoff and landing, making them
widely applicable in fields such as reconnaissance and transportation. However, the configuration
of traditional helicopters causes the rotor blades to be affected by shock waves during high-
speed flight, making stable flight difficult. In order to retain the flexible flying capability
of helicopters while developing their high-speed flight capability, the design of compound
helicopters, which combine fixed wings with rotors, has become an essential direction for
development. In this context, this paper develops a model for the variation of attitude angles
and the optimal combination of relevant control components in different flying missions during
low-speed and high-speed flight.

2. Problem Analysis

2.1 Analysis of Basic Concepts

The coaxial helicopter is a typical composite helicopter type, whose construction consists
of four main power components: coaxial rigid rotor blades, propeller thrusters, horizontal tail
blades, and vertical tail blades.

The coaxial rigid rotor is a system in which two or more rotors are located on the same
axis and share the same rotor center, which provides better stability and control, and reduces
torque effects; the propeller thruster is a mechanism for generating thrust through propellers,
which provides thrust for the helicopter; the horizontal tail is a horizontal airfoil at the tail of
the helicopter, which helps to maintain the balance and stability of the helicopter; The vertical
tail is a vertical airfoil on the tail of a helicopter that helps maintain the helicopter’s directional
stability.

The flight attitude of a helicopter is described using attitude angles, namely, the roll angle
𝜙, pitch angle 𝜃, and yaw angle 𝜓 in flight, which refer to the angle at which the helicopter
rotates about its forward direction (i.e., the longitudinal axis), the angle at which it rotates about
its transverse axis, and the angle at which it rotates about its vertical axis, respectively, during
flight.

The change of attitude angle during flight is mainly determined by its corresponding mo-
ments, which are roll moment, pitch moment, and yaw moment, and these three moments
produce the motion on the corresponding angles, respectively.
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2.2 Mechanical Analysis

The four power components of the coaxial helicopter result in seven operable sections, which
are:

(1) The coaxial rotor contains two coaxial counter-rotating rotors to counteract the torque
applied by the rotor as much as possible. At the same time, the two rotors have a certain
degree of freedom of motion, and there exist four operations, which in general bring about
rotor roll moment, rotor pitching moment, and rotor yaw moment, which are reflected as rotor
roll moment coefficient, rotor pitching moment coefficient, and rotor yaw moment coefficient.
Through the moment coefficients, the moment factors can be obtained, thus further obtaining
the corresponding moments. Its four operations are:

• Total distance 𝑢𝑐

• Differential total distance 𝑢𝑐𝑑

• Longitudinal cyclic pitching 𝑢𝑒

• Horizontal cyclic pitch 𝑢𝑎

(2) Propeller thruster operating capacity 𝑢𝑡 . It represents the power of propeller operation,
which has a definite positive correlation with the force and torque provided by the propeller,
and this torque is also known as the roll torque caused by the propeller thruster. Meanwhile, the
helicopter’s propulsive force mainly comes from the propeller thruster.

(3) Elevator rudder deflection value 𝑢𝑒ℎ: represents the angle of the horizontal tail pitching
up and down, which generates the pitching moment.

(4) Rudder deflection value 𝑢𝑎𝑣: represents the angle of vertical tail left and right deflection,
which will generate yaw moment.

2.3 Problem 1 and Problem 2 Analysis

The first two questions require the solution of roll, pitch and yaw moment expressions for
given conditions, based on which the pitch angle variation is modeled and the attitude angle
of the aircraft is given at 5, 10 and 20 seconds. The physics of the three moments is known,
and it is only necessary to fit 13 functional relationships for the rotor moment factor as well
as the horizontal and vertical tail moment factor to obtain the moment coefficients for a given
speed, to establish the attitude angle equations of motion and to solve for the attitude angle as
a function of time. Different vertical velocity components are given in the first two questions,
and the number of the attitude angles to be solved are one and three, respectively. In order to
completely consider the effect of vertical velocity components, we establish a hydrodynamics-
based dynamic pressure solution equation and simplify it to the increase of airflow velocity due
to the tail angle. We obtained the corresponding set of differential equations and wrote python
program to solve the set of differential equations to get the answers to the first two questions.
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2.4 Problem 3 and Problem 4 Analysis

The last two questions require the design of the component maneuvering amplitude to satisfy
the helicopter’s zero attitude angle flight for a given change in speed. The third question restricts
the helicopter to uniform linear motion and requires the design of the component’s maneuvering
amplitude to maintain the attitude of the fuselage at zero attitude angle. Since the state of the
aircraft remains constant, it is only necessary to make all three moments in the attitude angle
equation of motion take zero to achieve zero attitude angle throughout the motion. The fourth
problem restricts the aircraft to moving at a given acceleration, introduces a constant torque
on the fuselage from the propeller thrusters, and because the dynamic pressure changes due
to the change in air velocity, a dynamic component maneuvering amplitude must be input to
satisfy the problem, and the equations with zero moments become dynamic equations with the
parameter t. In both problems, however, there are more parameters that can be manipulated than
the corresponding limitations, which would lead to different helicopter maneuvering scenarios.
We obtain the best solution by examining the operating parameters with the lowest sensitivity,
as well as the most stable ones.

3. Data Analysis and Symbol Explanation

Parameter Name Symbol Unit value

Mass 𝑀 𝑘𝑔 5000
Fuselage Length 𝐿 𝑚 8
Roll Axis Moment of Inertia 𝐼1 𝑘𝑔 · 𝑚2 8000
Pitch Axis Moment of Inertia 𝐼2 𝑘𝑔 · 𝑚2 20000
Yaw Axis Moment of Inertia 𝐼3 𝑘𝑔 · 𝑚2 25000
Coaxial Rigid Rotor Radius 𝑅1 𝑚 6
Coaxial Rigid Rotor Speed 𝑉1 𝑚/𝑠 180
Lateral Distance of Propeller Thruster 𝑙2 𝑚 -3.5
Longitudinal Distance of Propeller Thruster ℎ2 𝑚 -0.2
Horizontal Tail Surface Area 𝑆3 𝑚2 1
Lateral Distance of Horizontal Tail 𝑙3 𝑚 -3
Vertical Tail Surface Area 𝑆4 𝑚2 0.5
Lateral Distance of Vertical Tail 𝑙4 𝑚 -3
Longitudinal Distance of Vertical Tail ℎ4 𝑚 0.2

table 1
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Maneuvering Volume Symbol Unit Selectable Range

Coaxial rotor overall distance 𝑢𝑐 degree [0,30]
Coaxial rotor differential total distance 𝑢𝑐𝑑 degree [-25,25]
Coaxial rotor longitudinal cycle pitch 𝑢𝑒 degree [-25,25]
Coaxial rotor lateral cycle pitch 𝑢𝑎 degree [-25,25]
Propeller thruster operating capacity 𝑢𝑡 degree [0,36]
Elevator deflection values 𝑢𝑒ℎ degree [-25,25]
Rudder deflection values 𝑢𝑎𝑣 degree [-25,25]

Data name Symbol

Roll deflection value 𝑅1

Lateral pitch roll factor 𝑅2

Differential total distance roll coefficient 𝑅3

Pitch deviation value 𝑅4

Longitudinal variable pitch coefficient 𝑅5

Total pitch coefficient 𝑅6

Differential total pitch coefficient 𝑅7

Yaw deviation value 𝑅8

Differential total pitch yaw coefficient 𝑅9

Horizontal tail moment coefficient deviation 𝑅10

Elevator coefficient 𝑅11

Vertical tail moment coefficient deviation 𝑅12

Rudder coefficient 𝑅13

Data name Symbol Unit

Propeller thruster thrust 𝐹𝑝 𝑁

Propeller thruster rotational torque 𝑀𝑟2 𝑁 · 𝑚

4. Assumptions

• Assuming that the given three moments of inertia are moments of inertia on the principal
axes of inertia, so that the rotations are independent of each other with respect to the
helicopter’s own instantaneous local frame of reference.

• The fluid is considered to be incompressible, in accordance with Bernoulli’s principle.
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• The air flow on the surface of the tail fin has the same component in the same direction as
the ambient air velocity and satisfies that the velocity field is parallel to the surface of the
wing.

• The interaction between the two tail fins and the rest of the fuselage is not considered.
• The air density is constant, and the change of air density due to the change of altitude is

neglected.
• The forces in other directions generated by the rotor blades due to the attitude angle are not

taken into account, and it is considered that the vertical direction can always be maintained
at a constant speed, and that only the thrust of the propeller acts on the fuselage in the
forward direction.

5. Modeling and Solving

5.1 Questions one and two

5.1.1 Euler angle modeling of helicopter attitude angles

In order to more accurately describe the helicopter’s ground flying posture and to carry out
the subsequent description of the helicopter’s motion state based on it, we establish the Euler
angle model of the helicopter’s attitude angle based on the roll angle, pitch angle and yaw angle
given in the question.

The Eulerian angle model is based on the Cartesian coordinate system and is used to represent
orientations and orientation transformations in a three-dimensional coordinate system, which
minimally parameterizes 𝑆𝑂 (3) to represent arbitrary orientations by specifying three angles
associated with three axes of rotation in three-dimensional space.

First, we establish an advective reference system XYZ with the center of mass of the
helicopter as the origin:

©­­­«
𝑋

𝑌

𝑍

ª®®®¬ =
©­­­«
𝑥 + Δ𝑥

𝑦 + Δ𝑦

𝑧 + Δ𝑧

ª®®®¬ (1)

Δ𝑥,Δ𝑦,Δ𝑧 denote the helicopter’s translational distances in the three directions respectively.
The xyz coordinate system is the stationary coordinate system at the starting point, from which
a new translational coordinate system XYZ is established.

In addition we have established a regional reference system 𝑋𝑌𝑍∗ that is fixed to the helicopter
and changes with its attitude:

We use Euler angles to describe the attitude of a vehicle, which usually consists of three
angles: roll, pitch, and yaw. Each of these angles describes the rotation of the vehicle around
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its own three axes. These three angles can be combined to form a sequence of Euler angles,
which can be represented in different ways depending on the order of rotation. And here we
consider the Z-Y-X sequence, i.e., the Heading-Pitch-Roll (HPR) sequence, for helicopter flight,
these angles can be used to characterize the attitude of the vehicle with respect to the horizontal,
vertical and longitudinal axes.

• Roll angle (𝜙): The angle of rotation around the vertical axis 𝑋∗ of the vehicle.
• Pitch angle (𝜃): Angle of rotation around the horizontal axis of the vehicle, 𝑌 ∗ axis.
• Yaw angle (𝜓): Angle of rotation around the vertical axis 𝑍∗ of the vehicle.

We can use these angles to measure the relationship between two coordinate systems:

©­­­«
𝑋

𝑌

𝑍

ª®®®¬
∗

= 𝑀2(𝜓, 𝜃, 𝜙)
©­­­«
𝑋

𝑌

𝑍

ª®®®¬ (2)

𝑀2 is the rotation matrix used to describe the attitude change from the XYZ reference system to
the (𝑋,𝑌, 𝑍)∗ system during the helicopter motion.

And the rotation matrix is:

𝑀2(𝜓, 𝜃, 𝜙) = 𝑅𝑧 (𝜓)𝑅𝑦 (𝜃)𝑅𝑥 (𝜙) (3)

𝑅𝑧 (𝜓), 𝑅𝑦 (𝜃) and 𝑅𝑥 (𝜙) are the rotation matrices for rotating the corresponding angles around
the 𝑍∗-axis, 𝑌 ∗-axis and 𝑋∗-axis, respectively, in the form:
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Rotation matrix around the x-axis 𝑅𝑥 (𝜙) :

𝑅𝑥 (𝜙) =


1 0 0
0 cos(𝜙) − sin(𝜙)
0 sin(𝜙) cos(𝜙)

 (4)

Rotation matrix around the y-axis 𝑅𝑦 (𝜃) :

𝑅𝑦 (𝜃) =


cos(𝜃) 0 sin(𝜃)

0 1 0
− sin(𝜃) 0 cos(𝜃)

 (5)

Rotation matrix around the z-axis 𝑅𝑦 (𝜃) :

𝑅𝑧 (𝜓) =


cos(𝜓) − sin(𝜓) 0
sin(𝜓) cos(𝜓) 0

0 0 1

 (6)

In fact, 𝑀2 is the rotation matrix between any two coordinate systems that can be rotated to
coincide in the Z-Y-X order and the Euler angle sequence of (𝜓, 𝜃, 𝜙).

5.1.2 Data used in the solution

For problem one:

Data Name Data Value

initial flight altitude 𝐻 3000
flight speed forward component 𝑣 𝑓 80
vertical ascent component 𝑣𝑣 2
Coaxial rotor overall distance 𝑢𝑐 0
Coaxial rotor differential total distance 𝑢𝑐𝑑 -2.1552
Coaxial rotor longitudinal cycle pitch 𝑢𝑒 -3.4817
Coaxial rotor lateral cycle pitch 𝑢𝑎 -2.0743
Propeller thruster operating capacity 𝑢𝑡 0
Elevator deflection values 𝑢𝑒ℎ -9.0772*10−7

Rudder deflection values 𝑢𝑎𝑣 4.1869*10−7

For problem two:
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Data Name Data Value

initial flight altitude 𝐻 3000
flight speed forward component 𝑣 𝑓 80
vertical ascent component 𝑣𝑣 0.2
Coaxial rotor overall distance 𝑢𝑐 0
Coaxial rotor differential total distance 𝑢𝑐𝑑 -2.1552
Coaxial rotor longitudinal cycle pitch 𝑢𝑒 -3.4817
Coaxial rotor lateral cycle pitch 𝑢𝑎 -2.0743
Propeller thruster operating capacity 𝑢𝑡 0
Elevator deflection values 𝑢𝑒ℎ -9.0772*10−7

Rudder deflection values 𝑢𝑎𝑣 4.1869*10−7

5.1.3 Matrix factor regression

For the relevant parameter data given in the annex, we consider numerical regression of
the relevant parameters based on the original data, and respectively select the most appropriate
regression method based on the richness of the data and the scope of use.

For the Roll deflection value to Rudder coefficient in Flight Speed / Rotor Blade Tip Speed
are 0, 0.1, 0.2, 0.3 corresponding to the value given in the appendix, considering that the amount
of data is small, and that the data given in the question Flight Speed / Rotor Blade Tip Speed is
80/180, we used python program to respectively interpolate and regress the 13 data. The data
we got at 80/180 are as follows:

Data name Symbol 𝑉/𝑉1 = 80/180

Roll deflection value 𝑅1 0.000413
Lateral pitch roll factor 𝑅2 0.00052
Differential total distance roll coefficient 𝑅3 -0.000295
Pitch deviation value 𝑅4 0.0059
Longitudinal variable pitch coefficient 𝑅5 0.0007193
Total pitch coefficient 𝑅6 0.00055
Differential total pitch coefficient 𝑅7 -0.000001
Yaw deviation value 𝑅8 0.0001
Differential total pitch yaw coefficient 𝑅9 0.00008
Horizontal tail moment coefficient deviation 𝑅10 -0.0001
Elevator coefficient 𝑅11 -0.00019
Vertical tail moment coefficient deviation 𝑅12 -0.00027
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Data name Symbol 𝑉/𝑉1 = 80/180

Rudder coefficient 𝑅13 -0.000046

One of the curve relationships

For the data relationship between Propeller thruster operating capacity (𝑢𝑡) and Propeller
thruster thrust and Propeller thruster rotational torque given in the question, considering its
relatively rich data, we are only looking for parameter values within the given range. We choose
to perform a polynomial regression on it in order to obtain the 𝐹𝑝 and 𝑀𝑟2 corresponding to the
other 𝑢𝑡 values within the range:

Name Symbol Regression relationship

Propeller thruster thrust 𝐹𝑝 30.051𝑢𝑡3 - 295.35𝑢𝑡2 + 1581.7𝑢𝑡 - 1128.6
Propeller thruster rotational torque 𝑀𝑟2 20.96𝑢𝑡3 - 211.26𝑢𝑡2 + 1041.6𝑢𝑡 - 678.57

5.1.4 Moment coefficient solution

The moment coefficients were calculated separately using the initial data with the following
equations:

𝐶𝑟1 = 𝑅1 + 𝑅2 × 𝑢𝑎 + 𝑅3 × 𝑢𝑐𝑑 (7)

𝐶𝑝1 = 𝑅4 + 𝑅5 × 𝑢𝑒 + 𝑅6 × 𝑢𝑐 + 𝑅7 × 𝑢𝑐𝑑 (8)

𝐶𝑦1 = 𝑅8 + 𝑅9 × 𝑢𝑐𝑑 (9)

𝐶𝑝3 = 𝑅10 + 𝑅11 × 𝑢𝑒ℎ (10)

𝐶𝑟𝑦4 = 𝑅12 + 𝑅13 × 𝑢𝑎𝑣 (11)

Among which:
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𝐶𝑟1 Rotor roll moment coefficient = roll deviation value + lateral pitch roll factor ×lateral
cycle pitch + differential total distance roll coefficient × differential total distance

𝐶𝑝1 Rotor pitch moment coefficient = pitch deviation value + longitudinal variable pitch
coefficient × longitudinal cycle pitch + total pitch coefficient × overall distance + differential
total pitch coefficient * differential total distance

𝐶𝑦1 Rotor yaw moment coefficient = yaw deviation + differential total pitch yaw coefficient
× differential total distance

𝐶𝑝3 Horizontal tail moment coefficient = Horizontal tail moment coefficient deviation +
Elevator coefficient × Elevator deflection angle

𝐶𝑟𝑦4 Vertical tail moment coefficient = Vertical tail moment coefficient deviation + Rudder
coefficient × Rudder deflection angle

5.1.5 Moment expressions

Based on the above moment coefficients, we obtain the following moment expressions:

𝑅𝑜𝑡𝑜𝑟 𝑟𝑜𝑙𝑙 𝑚𝑜𝑚𝑒𝑛𝑡 𝑀𝑟1 =
1
2
𝐶𝑟1𝜌𝑆1𝑉

2
1 (12)

𝑅𝑜𝑡𝑜𝑟 𝑝𝑖𝑡𝑐ℎ 𝑚𝑜𝑚𝑒𝑛𝑡 𝑀𝑝1 =
1
2
𝐶𝑝1𝜌𝑆1𝑉

2
1 (13)

𝑅𝑜𝑡𝑜𝑟 𝑦𝑎𝑤 𝑚𝑜𝑚𝑒𝑛𝑡 𝑀𝑦1 =
1
2
𝐶𝑦1𝜌𝑆1𝑉

2
1 (14)

𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑜𝑟𝑞𝑢𝑒 𝑀𝑟2 (15)

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑡𝑎𝑖𝑙 𝑝𝑖𝑡𝑐ℎ 𝑚𝑜𝑚𝑒𝑛𝑡 𝑀𝑝3 =
1
2
𝑙3𝐶𝑝3𝜌

∮
𝑆3

®𝑣2(®𝑥) d𝑆 (16)

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑡𝑎𝑖𝑙 𝑟𝑜𝑙𝑙 𝑚𝑜𝑚𝑒𝑛𝑡 𝑀𝑟4 =
1
2
ℎ4𝐶𝑟𝑦4𝜌

∮
𝑆4

®𝑣2(®𝑥) d𝑆 (17)

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑡𝑎𝑖𝑙 𝑦𝑎𝑤 𝑚𝑜𝑚𝑒𝑛𝑡 𝑀𝑦4 =
1
2
𝑙4𝐶𝑟𝑦4𝜌

∮
𝑆4

®𝑣2(®𝑥) d𝑆 (18)

Thus we can get expressions for the total roll moment, pitch moment and yaw moment:

𝑀𝑟 = 𝑀𝑟1 + 𝑀𝑟2 + 𝑀𝑟4 =
1
2
𝐶𝑟1𝜌𝑆1𝑉

2
1 + 𝑀𝑟2 +

1
2
ℎ4𝐶𝑟𝑦4𝜌

∮
𝑆4

®𝑣2(®𝑥) d𝑆 (19)

𝑀𝑝 = 𝑀𝑝1 + 𝑀𝑝3 =
1
2
𝐶𝑝1𝜌𝑆1𝑉

2
1 + 1

2
𝑙3𝐶𝑝3𝜌

∮
𝑆3

®𝑣2(®𝑥) d𝑆 (20)

𝑀𝑦 = 𝑀𝑦1 + 𝑀𝑦4 =
1
2
𝐶𝑦1𝜌𝑆1𝑉

2
1 + 1

2
𝑙4𝐶𝑟𝑦4𝜌

∮
𝑆4

®𝑣2(®𝑥) d𝑆 (21)

However, in practical situations, when the tail is at different angles to the airflow, the actual
flow velocity of the airflow on the tail surface is different, resulting in different dynamic pressures
1
2𝜌

∮
𝑆
®𝑣2(®𝑥) d𝑆, which are modeled as the velocity field solution below.
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5.1.6 Velocity field solution

Assuming that air is an incompressible fluid and satisfies Bernoulli’s equation, the pressure
field 𝑝(®𝑥) solves the equation as follows.

∇ · ®𝐽 (®𝑥) = 0 (22)
®𝐽 (®𝑥) = ®𝑉 (®𝑥) · 𝜌 (23)

𝑝(®𝑥) + 1
2
𝜌 ®𝑉 (®𝑥)2

= 𝐶 (24)

®𝐽 (®𝑥) is the air mass flow field. ®𝑉 (®𝑥) is the air velocity field.𝑝(®𝑥) is the pressure field.𝜌 is the
air density. The following conditions are satisfied:

lim
®𝑥→inf

®𝐽 (®𝑥) = 𝜌 ®𝑉0 (25)

lim
®𝑥→inf

𝑝(®𝑥) = 𝑝0 (26)

𝑊ℎ𝑒𝑛 𝐹𝐻−𝑡𝑎𝑖𝑙 (®𝑥) = 0, ®𝐽 (®𝑥) ·
©­­­«𝑀2(𝜓, 𝜃, 𝜙)

©­­­«
1
0

tan 𝑢𝑒ℎ

ª®®®¬
ª®®®¬ = 0 (27)

𝑊ℎ𝑒𝑛 𝐹𝑉−𝑡𝑎𝑖𝑙 (®𝑥) = 0, ®𝐽 (®𝑥) ·
©­­­«𝑀2(𝜓, 𝜃, 𝜙)

©­­­«
− tan 𝑢𝑎𝑣

1
0

ª®®®¬
ª®®®¬ = 0 (28)

®𝑉0 = (−80, 0, 2) is the ambient velocity of the gas.𝐹𝐻−𝑡𝑎𝑖𝑙 = 0 is the equation fulfilled by the
geometrical shape of the horizontal tail.𝐹𝑉−𝑡𝑎𝑖𝑙 = 0 is the equation fulfilled by the geometrical
shape of the vertical tail.

The above equations are not easy to solve and we use a simplified flow conservation model
to solve the velocity field. Considering the windward side surface of the tail, we assume that
the airflow velocity on the windward side surface consists of two components, one of which
®𝑣1(𝑥) is equal to the velocity of the airflow environment, and perpendicular to it, ®𝑣2(𝑥) such
that the and the velocity still satisfy the above equations (27) or (28) of the surface of the tail,
respectively. This narrows the gas flow tube and the gas flows across the surface at a faster
velocity, which ensures that an equal amount of gas flows across the surface in the same amount
of time as compared to the air ambient gas flow velocity. From the tail surface equations and
the gas ambient velocities we can get the surface air velocity expressions for both tails:

®𝑣𝐻 = ®𝑣𝐻1 + ®𝑣𝐻2 = 𝑔0(𝜙, 𝜃, 𝜓) (29)

®𝑣𝑉 = ®𝑣𝑉1 + ®𝑣𝑉2 = 𝑔1(𝜙, 𝜃, 𝜓) (30)
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i.e.

𝑣𝐻 =
√︁

802 + 22
©­­­«(0, 0, 1)𝑀2(𝜙, 𝜃, 𝜓)

©­­­«
0
0
1

ª®®®¬
ª®®®¬
−1

(31)

𝑣𝑉 =
√︁

802 + 22
©­­­«(0, 1, 0)𝑀2(𝜙, 𝜃, 𝜓)

©­­­«
0
1
0

ª®®®¬
ª®®®¬
−1

(32)

5.1.7 Solution to Problem 1

In the case of the principal axis of inertia, the general relationship between moment and
angle is:

𝑀𝑤 = 𝐼𝑤 × 𝑑2𝜃𝑤

𝑑𝑡2
(33)

𝑀𝑤 is the moment in a certain direction, 𝐼𝑤 is the rotational inertia on the corresponding axis,
and 𝜃𝑤 is the angle corresponding to that axis. Thus we can get the following equations:

1
2
𝐶𝑟1𝜌𝑆1𝑉

2
1 + 𝑓 (𝑢𝑡) +

1
2
ℎ4𝐶𝑟𝑦4𝜌

∮
𝑆4

®𝑣2(®𝑥) d𝑆 = 𝐼𝑟 ¥𝜙𝑑 (34)

1
2
𝐶𝑝1𝜌𝑆1𝑉

2
1 + 1

2
𝑙3𝐶𝑝3𝜌

∮
𝑆3

®𝑣2(®𝑥) d𝑆 = 𝐼𝑝 ¥𝜃𝑑 (35)

1
2
𝐶𝑦1𝜌𝑆1𝑉

2
1 + 1

2
𝑙4𝐶𝑟𝑦4𝜌

∮
𝑆4

®𝑣2(®𝑥) d𝑆 = 𝐼𝑦 ¥𝜓𝑑 (36)

𝑣 takes the computed constant value and 𝜙𝑑 , 𝜃𝑑 , 𝜓𝑑 respectively denote the angle with respect to
the instantaneous stationary coordinate system, which satisfies:

𝑀2(𝜙 + 𝑑𝜙, 𝜃 + 𝑑𝜃, 𝜓 + 𝑑𝜓)
©­­­«
𝑋

𝑌

𝑍

ª®®®¬ = 𝑀2(𝑑𝜙𝑑 , 𝑑𝜃𝑑 , 𝑑𝜓𝑑)
©­­­«
𝑋

𝑌

𝑍

ª®®®¬
∗

(37)

©­­­«
𝑋

𝑌

𝑍

ª®®®¬
∗

= 𝑀2(𝜙, 𝜃, 𝜓)
©­­­«
𝑋

𝑌

𝑍

ª®®®¬ (38)

i.e.

𝑀2(𝑑𝜙𝑑 , 𝑑𝜃𝑑 , 𝑑𝜓𝑑) = 𝑀2(𝜙 + 𝑑𝜙, 𝜃 + 𝑑𝜃, 𝜓 + 𝑑𝜓)𝑀−1
2 (𝜙, 𝜃, 𝜓) (39)

From the above equation, we can get the transformation relationship between (𝑑𝜙𝑑 , 𝑑𝜃𝑑 , 𝑑𝜓𝑑)
and (𝑑𝜙, 𝑑𝜃, 𝑑𝜓). Associating the above equations can get the differential equation about
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(𝜙, 𝜃, 𝜓), and writing a program to discretize and solve can get the value of (𝜙, 𝜃, 𝜓) at any
moment.

In Problem 1, we ignore the smaller 𝑀𝑝 and 𝑀𝑦 and get:

𝜃 (5) = 1.9119𝑑𝑒𝑔𝑟𝑒𝑒 , 𝜃 (10) = 3.8162𝑑𝑒𝑔𝑟𝑒𝑒 , 𝜃 (20) = 7.6399𝑑𝑒𝑔𝑟𝑒𝑒 (40)

5.1.8 Solution to Problem 2

Similar to the solution of Problem 1, the air ambient velocity becomes ®𝑉0 = (−80, 0, 0.2),
which can also be found:

𝑣𝐻 =
√︁

802 + 0.22/
©­­­«(0, 0, 1)𝑀2(𝜓, 𝜃, 𝜙)

©­­­«
0
0
1

ª®®®¬
ª®®®¬ (41)

𝑣𝑉 =
√︁

802 + 0.22/
©­­­«(0, 1, 0)𝑀2(𝜓, 𝜃, 𝜙)

©­­­«
0
1
0

ª®®®¬
ª®®®¬ (42)

Solving the above system of equations also gives the trend of attitude angle with time (𝜙(𝑡), 𝜃 (𝑡), 𝜓(𝑡)),
the corresponding predicted values are:

𝜙(5) = 0.2063 𝑑𝑒𝑔𝑟𝑒𝑒 , 𝜙(10) = 0.4139 𝑑𝑒𝑔𝑟𝑒𝑒 , 𝜙(20) = 0.8377 𝑑𝑒𝑔𝑟𝑒𝑒 (43)

𝜃 (5) = 0.3103 𝑑𝑒𝑔𝑟𝑒𝑒 , 𝜃 (10) = 0.6243 𝑑𝑒𝑔𝑟𝑒𝑒 , 𝜃 (20) = 1.2702 𝑑𝑒𝑔𝑟𝑒𝑒 (44)

𝜓(5) = 0.3875 𝑑𝑒𝑔𝑟𝑒𝑒 , 𝜓(10) = 0.7789 𝑑𝑒𝑔𝑟𝑒𝑒 , 𝜓(20) = 1.5816 𝑑𝑒𝑔𝑟𝑒𝑒 (45)

5.2 Problem 3 and Problem 4

5.2.1 Modeling and Solving of Problem 3

The parameter, air ambient velocity ®𝑉0 = (−80, 0, 0.2), is known. It can be obtained from
(41)(42):

𝑣𝐻 =
√︁

802 + 0.22/
©­­­«(0, 0, 1)𝑀2(0, 𝑢𝑒ℎ, 0)

©­­­«
0
0
1

ª®®®¬
ª®®®¬ (46)

𝑣𝑉 =
√︁

802 + 0.22/
©­­­«(0, 1, 0)𝑀2(𝑢𝑎𝑣, 0, 0)

©­­­«
0
1
0

ª®®®¬
ª®®®¬ (47)

Three expressions for moments (19)(20)(21) and parametric expressions (7)∼(11) are known.
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Associating all equations gives the moment with respect to the component maneuver (𝑢𝑡 = 0):

𝑀𝑟 = 𝑀𝑟1 + 𝑀𝑟2 + 𝑀𝑟4 =
1
2
𝐶𝑟1𝜌𝑆1𝑉

2
1 + 𝑓 (𝑢𝑡) +

1
2
ℎ4𝐶𝑟𝑦4𝜌

∮
𝑆4

®𝑣2(®𝑥) d𝑆 (48)

𝑀𝑝 = 𝑀𝑝1 + 𝑀𝑝3 =
1
2
𝐶𝑝1𝜌𝑆1𝑉

2
1 + 1

2
𝑙3𝐶𝑝3𝜌

∮
𝑆3

®𝑣2(®𝑥) d𝑆 (49)

𝑀𝑦 = 𝑀𝑦1 + 𝑀𝑦4 =
1
2
𝐶𝑦1𝜌𝑆1𝑉

2
1 + 1

2
𝑙4𝐶𝑟𝑦4𝜌

∮
𝑆4

®𝑣2(®𝑥) d𝑆 (50)

Bringing the values into the equations and simplifying them gives the following results:

𝑀𝑟 = 977.3679 + 1229.0242𝑢𝑎 − 697.2349𝑢𝑐𝑑 −
0.1115 + 0.01899𝑢𝑎𝑣

cos2 𝑢𝑎𝑣
(51)

𝑀𝑝 = 13944.6979 + 1700.0714𝑢𝑒 + 1299.9295𝑢𝑐 − 2.3635𝑢𝑐𝑑 +
1.2384 + 2.3533𝑢𝑒ℎ

cos2 𝑢𝑒ℎ
(52)

𝑀𝑦 = 236.3508 + 189.0806𝑢𝑐𝑑 +
1.6719 + 0.2848𝑢𝑎𝑣

cos2 𝑢𝑎𝑣
(53)

Assign a value to the following variables:

𝑀𝑟 = 0 (54)

𝑀𝑝 = 0 (55)

𝑀𝑦 = 0 (56)

Only three degrees of freedom are needed. Select the most stable from the linear term, test the
sensitivity of the two variables of the trigonometric term, and then take the partial derivatives
of the desired solution to see the trend of the attitude angle.

5.2.2 Solution to Problem 3 in low-speed flight

In low-speed mode (usually referred to as speeds below 85 m/s), attitude angle control is
mainly realized by the coaxial rotor and propeller thrusters, so we fix the Elevator deflection
values 𝑢𝑒ℎ to be arctan−0.2/80 ≈ −0.0025 and the Rudder deflection values 𝑢𝑎𝑣 to be zero.
Then we can get the moment with respect to the amount of coaxial rotor operation (𝑢𝑡 = 0):

𝑀𝑟 = 𝑀𝑟1 + 𝑀𝑟2 + 𝑀𝑟4 =
1
2
𝐶𝑟1𝜌𝑆1𝑉

2
1 + 𝑓 (𝑢𝑡) +

1
2
ℎ4𝐶𝑟𝑦4𝜌

∮
𝑆4

®𝑣2(®𝑥) d𝑆 (57)

𝑀𝑝 = 𝑀𝑝1 + 𝑀𝑝3 =
1
2
𝐶𝑝1𝜌𝑆1𝑉

2
1 + 1

2
𝑙3𝐶𝑝3𝜌

∮
𝑆3

®𝑣2(®𝑥) d𝑆 (58)

𝑀𝑦 = 𝑀𝑦1 + 𝑀𝑦4 =
1
2
𝐶𝑦1𝜌𝑆1𝑉

2
1 + 1

2
𝑙4𝐶𝑟𝑦4𝜌

∮
𝑆4

®𝑣2(®𝑥) d𝑆 (59)

Bringing the values into the equations and simplifying them gives the following results:

𝑀𝑟 = 977.2564 + 1229.0242𝑢𝑎 − 697.2349𝑢𝑐𝑑 (60)

𝑀𝑝 = 13945.9304 + 1700.0714𝑢𝑒 + 1299.9295𝑢𝑐 − 2.3635𝑢𝑐𝑑 (61)

𝑀𝑦 = 238.0227 + 189.0806𝑢𝑐𝑑 (62)
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Assign a value to the following variables:

𝑀𝑟 = 0

𝑀𝑝 = 0

𝑀𝑦 = 0

(63)

The system of chi-square equations can then be obtained and the solution space is:

𝑢𝑎 = −1.5093
𝑢𝑐𝑑 = −1.2588
8.2049 + 𝑢𝑒 + 0.7646𝑢𝑐 = 0
𝑢𝑒 ∈ [−25,−8.2049]
𝑢𝑐 ∈ [0, 21.9649]

(64)

5.2.3 Modeling and Solving of Problem 4

In this problem, the helicopter is required to accelerate, which brings two differences: first,
uniform acceleration in the forward direction requires 𝑢𝑡 to take some constant value except
zero, which introduces an additional roll moment 𝑀𝑟3; and second, the increase in velocity
corresponds to an increase in the ambient velocity of the air, i.e., ®𝑉0(𝑡) = (−5𝑡 − 80, 0, 0, 2),
which introduces a time term in the equations that makes the final result dynamic with respect
to the time variation.

First, from the kinetic laws of accelerated motion, the propeller thruster provides a thrust of

𝐹𝑝 = 𝑀𝑎 = 25000𝑁 (65)

From 𝐹𝑝 (𝑢𝑡), 𝑀𝑟2(𝑢𝑡) the corresponding 𝑀𝑟2 can be introduced. The parameter, air ambient
velocity ®𝑉0 = (−5𝑡 − 80, 0, 0.2) known, we can find with Eq. () that:

𝑣𝐻 =
√︁
(80 + 5𝑡)2 + 0.22/

©­­­«(0, 0, 1)𝑀2(0, 𝑢𝑒ℎ, 0)
©­­­«

0
0
1

ª®®®¬
ª®®®¬ (66)

𝑣𝑉 =
√︁
(80 + 5𝑡)2 + 0.22/

©­­­«(0, 1, 0)𝑀2(𝑢𝑎𝑣, 0, 0)
©­­­«

0
1
0

ª®®®¬
ª®®®¬ (67)

Three expressions for moments (19)(20)(21) and parametric expressions (7) (11) are known.
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Associating all equations gives the moment with respect to the component maneuver (𝑢𝑡 = 0):

𝑀𝑟 = 𝑀𝑟1 + 𝑀𝑟2 + 𝑀𝑟4 =
1
2
𝐶𝑟1𝜌𝑆1𝑉

2
1 + 𝑓 (𝑢𝑡) +

1
2
ℎ4𝐶𝑟𝑦4𝜌

∮
𝑆4

®𝑣2(®𝑥) d𝑆 (68)

𝑀𝑝 = 𝑀𝑝1 + 𝑀𝑝3 =
1
2
𝐶𝑝1𝜌𝑆1𝑉

2
1 + 1

2
𝑙3𝐶𝑝3𝜌

∮
𝑆3

®𝑣2(®𝑥) d𝑆 (69)

𝑀𝑦 = 𝑀𝑦1 + 𝑀𝑦4 =
1
2
𝐶𝑦1𝜌𝑆1𝑉

2
1 + 1

2
𝑙4𝐶𝑟𝑦4𝜌

∮
𝑆4

®𝑣2(®𝑥) d𝑆 (70)

Bringing the values into the equations and simplifying them gives the following results:

𝑀𝑟 = 12530.54 + 1229.02𝑢𝑎 − 697.23𝑢𝑐𝑑 − 10−5(1.74 + 0.30𝑢𝑎𝑣)
(80 + 5𝑡)2 + 0.02

cos2 𝑢𝑎𝑣
(71)

𝑀𝑝 = 13944.70 + 1700.07𝑢𝑒 + 1299.93𝑢𝑐 − 2.36𝑢𝑐𝑑 + 10−4(1.9 + 3.7𝑢𝑒ℎ)
(80 + 5𝑡)2 + 0.02

cos2 𝑢𝑒ℎ
(72)

𝑀𝑦 = 236.35 + 189.08𝑢𝑐𝑑 + 10−4(2.61 + 0.45𝑢𝑎𝑣)
(80 + 5𝑡)2 + 0.02

cos2 𝑢𝑎𝑣
(73)

Assign a value to the following variables:

𝑀𝑟 = 0

𝑀𝑝 = 0

𝑀𝑦 = 0

(74)

5.2.4 Optimization and identification of solutions to Problem 4

Considering the above system of equations, we take out the terms with 𝑢𝑎𝑣 and 𝑢𝑒ℎ to
respectively form the following functions on 𝑢𝑎𝑣 and 𝑢𝑒ℎ:

𝐹1 (𝑢𝑎𝑣, 𝑡) = (5.87 + 𝑢𝑎𝑣)
(80 + 5𝑡)2 + 0.02

cos2 𝑢𝑎𝑣
(75)

𝐹1
(
𝑢eh ,𝑡

)
= (0.526 + 𝑢𝑒ℎ)

(80 + 5𝑡)2 + 0.02
cos2 𝑢𝑒ℎ

(76)

Consider the following range of values of the two functions as t varies:

𝐹1 (𝑢av ) ∈ 𝐼1 (77)

𝐹2 (𝑢eh ) ∈ 𝐼2 (78)

Parameterized by these two values, the remaining unknowns constitute a linear programming
problem, on the basis of which we consider different scenarios in different modes.
In low-speed flight:
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At this point, with the terms other than 𝑢𝑎𝑣 and 𝑢𝑒ℎ as primary considerations, there is a
system of equations:

𝐶1 + 𝑘1𝑢𝑎 + 𝑘2𝑢𝑐𝑑 + 𝐹1 (𝑢av ) = 0

𝐶2 + 𝑘3𝑢𝑒 + 𝑘4𝑢𝑐 + 𝑘3𝑢𝑐𝑑 + 𝐹2 (𝑢eh ) = 0

𝐶3 + 𝑘6𝑢𝑐𝑑 + 𝐹1 (𝑢av ) = 0

(79)

This system of equations is linearly programmed and analyzed to find the optimal solution.
In high-speed flight:

Then, 𝑢𝑎𝑣 and 𝑢𝑒ℎ are the primary considerations. Considering to make the helicopter
maneuvering as stable as possible, the following results are obtained by taking the partial
derivatives in the solution space of the two functions separately, provided that the linear part
satisfies the range of variation condition:

min
𝜕𝑀 (𝑢𝑎𝑣, 𝑡)

𝜕𝑢𝑎𝑣
⇔ min

𝜕𝐹1 (𝑢𝑎𝑣, 𝑡)
𝜕𝑢𝑎𝑣

(80)

min
𝜕𝑀 (𝑢𝑎𝑣, 𝑡)

𝜕𝑢𝑎𝑣
⇔ min

𝜕𝐹2 (𝑢𝑒ℎ, 𝑡)
𝜕𝑢𝑒ℎ

(81)

The minimum value of the bias in the solution space under the constraints of its system of
equations is considered as the optimal solution.

In the intermediate stage, the optimal solution can be solved by integrating the sensitivity of
the linear terms in the high-speed case.
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6. Advantages and Disadvantages

6.1 Advantages:

• The principal axis of inertia and local coordinate system are established to solve the angle
strictly in accordance with physical principles,

• The flow conservation model is established to carefully consider the effect of different
airplane speeds on the dynamic pressure.

• In Problem 3 and Problem 4, the most stable operation scheme is obtained through sensi-
tivity analysis.

• In Problem 4, different operating volume scenarios are considered for different phases of
flight speed.

6.2 Disadvantages:

• The lift and thrust deflections due to aircraft attitude angle are neglected in the first two
questions

• The solution of dynamic pressure and the calculation of tail moment are not strict enough
• Does not consider the change in propeller thrust and torque due to the relative flow rate of

air at a given speed
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Appendix

import math

def computeC_r1(R_1,R_2,u_a,R_3,u_cd):

return R_1+R_2*u_a+R_3*u_cd

def computeC_p1(R_4,R_5,u_e,R_6,u_c,R_7,u_cd):

return R_4+R_5*u_e+R_6*u_c+R_7*u_cd

def computeC_y1(R_8,R_9,u_cd):

return R_8+R_9*u_cd

def computeC_p3(R_10,R_11,u_eh):

return R_10+R_11*u_eh

def computeC_ry4(R_12,R_13,u_av):

return R_12+R_13*u_av

R_1=0.000413

R_2=0.00052

R_3=-0.000295

R_4=0.0059

R_5=0.0007193

R_6=0.00055

R_7=-0.000001

R_8=0.0001

R_9=0.00008

R_10=-0.0001

R_11=-0.00019

R_12=-0.00027

R_13=-0.000046

u_c=0

u_cd=-2.1552

u_e=-3.4817

u_a=-2.0743

u_t=0
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u_eh=-0.0000009772

u_av=0.00000041869

C_r1=computeC_r1(R_1,R_2,u_a,R_3,u_cd)

C_p1=computeC_p1(R_4,R_5,u_e,R_6,u_c,R_7,u_cd)

C_y1=computeC_y1(R_8,R_9,u_cd)

C_p3=computeC_p3(R_10,R_11,u_eh)

C_ry4=computeC_ry4(R_12,R_13,u_av)

M_r2 = 20.96*u_t*u_t*u_t - 211.26*u_t*u_t + 1041.6*u_t - 678.57

import numpy as np

from scipy.interpolate import interp1d

import matplotlib.pyplot as plt

known_x = np.array([0, 0.1, 0.2, 0.3])

known_y = np.array([-0.00002,0.00017,0.00034,0.00043])

interp_function = interp1d(known_x, known_y, kind=’cubic’,

fill_value=’extrapolate’)

x_to_interpolate = 80/180

y_interpolated = interp_function(x_to_interpolate)

print(f’x = {x_to_interpolate} y: {y_interpolated}’)

x_values = np.linspace(0, 0.5, 100)

plt.plot(known_x, known_y, ’o’, label=’Known Data Points’)

plt.plot(x_values, interp_function(x_values), ’-’, label=’Interpolation

Curves’)

plt.xlabel(’R_4’)

plt.ylabel(’R=F/R’)

plt.legend()

plt.show()

from scipy.optimize import fsolve

import numpy as np

from scipy.integrate import odeint
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def equation(x):

return 30.051*x**3 - 295.35*x**2 + 1581.7*x - 1128.6 - 25000

initial_guess = [0.0]

solution = fsolve(equation, initial_guess)

K_r = 0.1

rho = 1.23

A = 10.0

V_tip = 5.0

C_p = 0.05

C_h = 0.02

q = 100.0

S = 8.0

y = 2.0

I_yy = 100.0

initial_conditions = [0.0]

def pitch_dynamics(theta, t):

M_r = K_r * rho * A * V_tip

T_p = C_p

M_h = C_h * q * S * y

dtheta_dt = (M_r + T_p + M_h) / I_yy

return dtheta_dt

time_points = np.linspace(0, 20, 1000)

result = odeint(pitch_dynamics, initial_conditions, time_points)

pitch_angles = result[:, 0]

def dynamics(variables, t):

p, q, r = variables
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M_roll = K_r * rho * A * V_tip + C_h * p * S_h * y_h

M_pitch = K_r * rho * A * V_tip + C_h * q * S_h * y_h

M_yaw = K_r * rho * A * V_tip + C_v * r * S_v * y_v

dp_dt = M_roll / I_roll

dq_dt = M_pitch / I_pitch

dr_dt = M_yaw / I_yaw

return [dp_dt, dq_dt, dr_dt]

time_points = np.linspace(0, 20, 1000)

result = odeint(dynamics, initial_conditions, time_points)

roll_angles, pitch_angles, yaw_angles = result[:, 0], result[:, 1],

result[:, 2]
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